Alterations in cellular pharmacokinetics and pharmacodynamics of elvitegravir in response to ethanol exposure in HIV-1 infected monocytic (U1) cells

نویسندگان

  • Narasimha M Midde
  • Namita Sinha
  • Pradeep B Lukka
  • Bernd Meibohm
  • Santosh Kumar
چکیده

Ethanol consumption is negatively associated with antiretroviral therapy (ART) adherence and general health in HIV positive individuals. Previously, we demonstrated ethanol-mediated alterations to metabolism of elvitegravir (EVG) in human liver microsomes. In the current study, we investigated ethanol influence on the pharmacokinetic and pharmacodynamic interactions of EVG in HIV infected monocytic (U1) cells. U1 cells were treated with 5 μM EVG, 2 μM Cobicistat (COBI), a booster drug, and 20 mM ethanol for up to 24 hours. EVG, HIV p24 levels, alterations in cytochrome P450 (CYP) 3A4, MRP1, and MDR1 protein expressions were measured. Presence of ethanol demonstrated a significant effect on the total exposures of both EVG and EVG in combination with COBI. Ethanol also increased the HIV replication despite the presence of drugs and this elevated HIV replication was reduced in the presence of MRP1 and MDR1 inhibitors. Consequently, a slight increase in EVG concentration was observed in the presence of MRP1 inhibitor but not with MDR1 inhibitor. Furthermore, CYP3A4, MRP1 and MDR1 protein levels were significantly induced in treatment groups which included ethanol compared to those with no treatment. In summary, these findings suggest that Ethanol reduces intra cellular EVG exposure by modifying drug metabolism and transporter protein expression. This study provides valuable evidence for further investigation of ethanol effects on the intracellular concentration of EVG in ex vivo or in vivo studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages

Purpose Monocytes serve as sanctuary sites for HIV-1 from which virus is difficult to be eliminated. Therefore, an effective viral suppression in monocytes is critical for effective antiretroviral therapy (ART). This study focuses on a new strategy using nanoformulation to optimize the efficacy of ART drugs in HIV-infected monocytes. Methods Poly(lactic-co-glycolic acid) (PLGA)-based elvitegr...

متن کامل

Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells

One of the major complications in cancer chemotherapy is the development of resistance, and cisplatin, as one of the important medicines in treatment regimens of different cancers is not excluded. One of the most described cellular defense mechanisms involved in resistance is glutathione (GSH) and in this study, the effects of cisplatin on the total intracellular GSH level (GSHi) in some sensit...

متن کامل

Upregulation of human immunodeficiency virus-1 in chronically infected monocytic cell line by both contact with endothelial cells and cytokines.

Cells of monocytic lineage (Mo) persistently infected with human immunodeficiency virus (HIV) have been suspected to be a major reservoir for in vivo transmission of virus to susceptible target cells. Cellular events and mechanisms that upregulate viral gene expression in such cells are important issues. Because the traffic of such cells is central to biodistribution of HIV, we have explored th...

متن کامل

Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells

One of the major complications in cancer chemotherapy is the development of resistance, and cisplatin, as one of the important medicines in treatment regimens of different cancers is not excluded. One of the most described cellular defense mechanisms involved in resistance is glutathione (GSH) and in this study, the effects of cisplatin on the total intracellular GSH level (GSHi) in some sensit...

متن کامل

اثر محافظتی روی در جلوگیری از سمیت اتانول بر حیات سلول‌های سرتولی موشی در شرایط in vitro

 Background & Aims: Ethanol has overall toxic effects on male fertility which directly or indirectly disturbs spermatogenesis. Zinc as an antioxidant agent, reduces ethanol-induced toxic effects on somatic (non-sexual) cells. However, the underling mechanism of effects of ethanol and zink on fertility potential especially on testis somatic cells is poorly understood. Accordingly, in the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017